
NeuroImage 258 (2022) 119357 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Face recognition from research brain PET: An unexpected PET problem 

Christopher G. Schwarz a , ∗ , Walter K. Kremers b , Val J. Lowe 

a , Marios Savvides c , 

Jeffrey L. Gunter a , Matthew L. Senjem 

a , d , Prashanthi Vemuri a , Kejal Kantarci a , 

David S. Knopman 

e , Ronald C. Petersen 

e , Clifford R. Jack Jr. a , # , the Alzheimer’s Disease 

Neuroimaging Initiative 

# 

a Department of Radiology, Mayo Clinic, Rochester, MN, USA 
b Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA 
c CyLab Biometrics Center and Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA 
d Department of Information Technology, Mayo Clinic, Rochester, MN, USA 
e Department of Neurology, Mayo Clinic, Rochester, MN, USA 

a r t i c l e i n f o 

Keywords: 

Face recognition 

De-facing 

De-identification 

Anonymization 

PET/CT 

a b s t r a c t 

It is well known that de-identified research brain images from MRI and CT can potentially be re-identified using 

face recognition; however, this has not been examined for PET images. We generated face reconstruction images 

of 182 volunteers using amyloid, tau, and FDG PET scans, and we measured how accurately commercial face 

recognition software (Microsoft Azure’s Face API) automatically matched them with the individual participants’ 

face photographs. We then compared this accuracy with the same experiments using participants’ CT and MRI. 

Face reconstructions from PET images from PET/CT scanners were correctly matched at rates of 42% (FDG), 

35% (tau), and 32% (amyloid), while CT were matched at 78% and MRI at 97-98%. We propose that these 

recognition rates are high enough that research studies should consider using face de-identification ( “de-facing ”) 

software on PET images, in addition to CT and structural MRI, before data sharing. We also updated our mri_reface 

de-identification software with extended functionality to replace face imagery in PET and CT images. Rates of 

face recognition on de-faced images were reduced to 0-4% for PET, 5% for CT, and 8% for MRI. We measured 

the effects of de-facing on regional amyloid PET measurements from two different measurement pipelines (PET- 

Surfer/FreeSurfer 6.0, and one in-house method based on SPM12 and ANTs), and these effects were small: ICC 

values between de-faced and original images were > 0.98, biases were < 2%, and median relative errors were < 

2%. Effects on global amyloid PET SUVR measurements were even smaller: ICC values were 1.00, biases were 

< 0.5%, and median relative errors were also < 0.5%. 
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. Introduction 

We have recently shown that modern commercial face recogni-

ion software now has very high accuracy for matching faces re-

onstructed from brain magnetic resonance imaging (MRI) with face

hotographs, potentially allowing re-identification of anonymous re-

earch participants from de-identified, publicly shared research datasets

 Schwarz et al., 2019a , 2021a ). Typical data use agreements for pub-

ic datasets require a downloader to agrvvee that they will not at-

empt to re-identify participants, but these offer no direct protection

or participants. The U.S. Health Insurance Portability and Accountabil-

ty Act (HIPAA) specifies that de-identified data must remove, among
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ther items, “Full face photographic images and any comparable im-

ges ” ( U.S. Department of Health and Human Services Office for Civil

ights, 2013 ). Our previous findings suggest that advancing technol-

gy may increasingly give brain images “comparable ” identifiability.

oftware for automatic face-deidentification or “de-facing ” MRI (auto-

atically removing facial features or replacing them with another face,

hich is sometimes called “re-facing ”) can greatly reduce this possibil-

ty of re-identification, but further work is needed to develop better de-

acing tools that more effectively prevent face recognition and further

inimize effects on measurements from de-faced data ( Buimer et al.,

021 ; de Sitter et al., 2020 ; Gao et al., 2022 ; Schwarz et al.,

021a ). 
, Rochester, Minnesota, 55905, USA. 
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Earlier works have also shown that computed tomography (CT) im-

ges, like MRI, are identifiable via both visual (human) and automated

ace recognition ( Mazura et al., 2012 ; Chen et al., 2014 ; Parks and Mon-

on, 2017 ). Positron Emission Tomography (PET) images of the brain

re commonly shared by imaging research studies ( Jagust et al., 2015 ;

aMontagne et al., 2019 ; Sperling et al., 2014 ), especially those of aging

nd dementia because amyloid and tau PET are typically used for the

esearch diagnosis and staging of Alzheimer’s disease ( Jack et al., 2018 ).

owever, the potential of these images for re-identification via captured

acial imagery has not been studied, perhaps due to the belief that brain

ET images typically lack sufficient resolution and field of view (FOV)

or face reconstruction. Our aims for this study were: 1) measure perfor-

ance of automated face recognition to match face photographs with

ace reconstructions derived from brain PET scans; and 2) measure per-

ormance of our automated mri_reface software for modifying the PET

mages, both in terms of how well it prevents face recognition, and the

ffects of its image modifications on automated brain biomarker mea-

urements. 

. Materials and methods 

.1. Dataset for Aim 1 (face recognition) 

Participants: Our face recognition dataset included 157 individuals

rom our previous face recognition study ( Schwarz et al., 2021a ), as well

s 25 additional volunteers from continuing recruitment. In total, we re-

ruited 182 volunteers (ages 34-93, mean = 63.2, median = 65, SD = 15.5),

tratified by sex and age-decade, who had previous brain imaging within

ix months as part of their existing enrollment in the Mayo Clinic Study

f Aging (MCSA) ( Petersen et al., 2010 ; Roberts et al., 2008 ). All par-

icipants provided informed consent for this specific study, which was

pproved by the Mayo Clinic Institutional Review Board. 

Photographs: We photographed each participant’s face under in-

oor lighting conditions using standard iPads (Apple Inc., Cupertino,

A; models Air 2 and 6 th generation). Participants were instructed to

ook directly at the camera, and then approximately 10 degrees up,

own, left, and right, for a total of five photos. This design intended to

rovide five suitable, somewhat-unique photos of each individual with

inimal participant burden, because we assume that an individual moti-

ated to re-identify a study participant would be able to find more than

ne suitable photograph of their face. Photos were manually cropped

oosely around the head and converted to grayscale to better match MRI

which does not capture color). This cropping retained the head, hair,

nd ears, removing only distant background and torso to reduce image

ize and speed up repeated image uploading during testing. 

Brain imaging: All 182 participants underwent a head MRI protocol

n Siemens Prisma scanners including a magnetization prepared rapid

radient echo (MPRAGE) sequence (TR/TE/TI = 2300/3.14/945 ms, flip

ngle 9°, 0.8 mm isotropic resolution), and a sagittal 3D FLAIR sequence

TR/TE/TI = 4800/441/1650, resolution 1.0 × 1.0 × 1.2mm) match-

ng the ADNI3 (Alzheimer’s disease Neuroimaging Initiative) protocol.

mong these participants, 167 had previously undergone imaging with

ittsburgh Compound B (PiB) Amyloid PET ( Klunk et al., 2004 ) and

lortaucipir (FTP) tau PET ( Xia et al., 2013 ), and 129 had previously un-

ergone imaging with Fludeoxyglucose (FDG) PET, all using GE PET/CT

canners (models Discovery 690XT and Discovery MI). We refer to these

ET scanners as “older ”, representing the generation of clinical PET/CT

hat are currently most prevalent in imaging research datasets. A small

raction of these participants (14 with FDG, 20 with PiB, and 19 with

TP) were also scanned at later visits with a Siemens Biograph64 Vision

00. This scanner creates images with higher signal to noise ratio than

lder generation models due to faster coincidence timing resolution, dig-

tal scintillation detectors, and ability to leverage this improved time-

f-flight information during reconstructions. We show data from both

canners for that subset of individuals. For all PET/CT scans, a low-dose

T scan was acquired for use in attenuation correction, and PET images
2 
ere reconstructed on-scanner using OSEM iterative algorithms with a

mm Gaussian post-reconstruction filter and standard corrections for at-

enuation, scatter, random coincidences, and decay. All PET protocols

cquired four late-uptake dynamic frames, which were co-registered and

ummed to produce static images from post-injection minutes 30-45 for

DG, 40-60 for PiB, and 80-100 for FTP. The low-dose CT scans were

eparately also used for testing face reconstruction and recognition from

T, but aside from their use in on-scanner attenuation correction, they

ere not used when testing face recognition from PET images. 

.2. Methods for Aim 1 (face recognition) 

Face reconstruction: Details of our methods for creating face

econstructions from structural MRI have been previously published

 Schwarz et al., 2021a , 2019a ). We used our previously described “stan-

ard ” face reconstruction method. Briefly, we apply automated thresh-

lding using Otsu’s method ( Otsu, 1979 ) to binarize the image, remove

ny regions of suprathreshold voxels that are not spatially connected

ith the largest region, and attempt to re-attach any aliased nose-parts

ehind the head (which not occur in PET or CT and thus this step does

othing). After this preprocessing, we construct an isosurface using the

sosurface function in Matlab, and create a render from this using Surf_Ice

 Rorden, n.d. ). For PET/CT images from older scanners, we also tested

ur “advanced ” face reconstructions that match each input image with

n average template of the same modality and use this template to “fill

n ” missing regions. The templates used for this process are the same av-

rage face templates we use in mri_reface (see below). For older PET/CT

mages, the advanced reconstructions replaced parts of nose and mouth

hat were outside the acquisition field of view, enabling face detection

nd recognition using the imaged regions (e.g. eye and forehead) despite

heir frequently missing nose and mouth. Both methods, originally de-

igned for MRI, were applied for PET and CT without any modifications

xcept altering some multipliers to automated hresholds to account for

ifferent contrast levels across image types. 

De-identification (de-facing): We have previously published a de-

cription and validation of mri_reface, our software for replacing face

nformation in MRI to prevent potential re-identification via face recog-

ition ( Schwarz et al., 2021a ). The software registers each input im-

ge to an average template image of the same modality and transforms

he template to the native input image space (linearly in the face/ears

nd nonlinearly in the rest of the image)performs global and local in-

ensity matching, then replaces face imagery with the linearly trans-

ormed average face from the template. Since that publication, we have

ublicly released this software, free for use by the research community

 https://www.nitrc.org/projects/mri_reface ). We have also improved its

erformance for preventing face recognition by replacing a larger area

f the eyebrow ridge and forehead, because the eyebrow ridge (peri-

cular region) is the most important area for modern automatic face

ecognition methods ( Juefei-Xu et al., 2015 , 2014 , 2011 ; Juefei-Xu and

avvides, 2016 ; Le et al., 2014 ; Woodard et al., 2010 ). These changes

ill be described and validated in more detail as part of an upcoming

eparate publication exploring the potential for face recognition in ad-

itional MRI sequences. 

We also extended mri_reface to support PET and CT by creating new

verage template images for PiB and Florbetapir (FBP) amyloid PET,

lortaucipir tau PET, and FDG PET, and by disabling replacement of air

n regions in front of and behind the head, because PET and CT do not

ave MRI’s “aliasing ” artifacts that may contain identifiable features.

e show two examples of mri_ reface on PET images in Fig. 1 . We cre-

ted templates for CT, FDG PET, PiB PET, and Flortaucipir PET using

ur previously published techniques ( Schwarz et al., 2021a ) with ANTs

oftware ( Avants et al., 2010 ) from in-house scans of participants in

he MCSA, Mayo Clinic Alzheimer’s Disease Research Center, and Mayo

linic DLB Consortium studies (n = 192 FDG, n = 200 PiB, n = 200 FTP,

 = 200 CT) scanned on a Siemens Biograph64 Vision600 PET/CT scan-

er (the highest quality PET data available to us). Group-wise regis-

https://www.nitrc.org/projects/mri_reface
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Fig. 1. Two example PET images Florbetapir PET scans from ADNI (with all standard ADNI pre-processing), both before (left) and after (right) replacing face imagery 

with mri_reface. 
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ration for PET from PET/CT was performed using corresponding CT

mages, and these parameters were used to transform the correspond-

ng PET before averaging. To create the Florbetapir PET template, we

sed similar techniques with scans of 120 participants from PET/MRI

canners in the public OASIS-3 dataset ( LaMontagne et al., 2019 ), ex-

ept these PET images were group-co-registered using PET images di-

ectly, since no CT was available. After group-co-registration, templates

ere warped (nonlinearly) to match existing MRI-based templates, us-

ng ANTs ( Avants et al., 2008 ). Prior to template creation, we intensity-

ormalized all PET scans to the standardized uptake value ratio (SUVR),

sing corresponding MRI. SUVR for amyloid and tau tracers used the bi-

ateral cerebellar crus as a reference region; cerebellar reference regions

re the typical choice for amyloid and tau PET because the cerebellum

s not typically affected by Alzheimer’s pathology until very late stages

 Klunk et al., 2004 ), and we used the crus sub-region to avoid bleed-in

rom cortical signal across the tentorium ( Baker et al., 2017 ; Lowe et al.,

018 ). For FDG, we used the pons as a reference region, which is a typ-

cal choice because cerebellar cortex metabolism is affected by age and

isease ( Nugent et al., 2020 ). We present images of these templates later,

n the Results section. 

Face recognition (matching): Details of our methods for using the

icrosoft Azure Face API to automatically match MRI-based face recon-

tructions with participant photographs have been previously published

 Schwarz et al., 2021a , 2019a ). Briefly, our testing paradigm measures

hether a motivated individual, who has reason to believe that partic-

pant’s brain images exist in a particular dataset, could correctly iden-

ify that participant using their photographs with face recognition soft-

are. We generated face reconstructions (renders) from each brain im-

ge (see Face Reconstruction, above), and we used these as the training

et for a face recognition classifier. When given an input face image

a participant’s face photograph, in our usage), this classifier returns

 ranking of the faces in the training set (reconstructions from brain
3 
mages, in our usage) by their similarity to the input face photograph.

or each participant in the dataset, we input standard face photographs

nd recorded which face reconstruction in the dataset was chosen by

he classifier as the best match. When the correct face (reconstructed

rom de-identified imaging) was the software’s top-ranked match for

he face photograph (e.g. identified photos that would be available to

omeone trying to re-identify a specific participant), we counted this

s a successful re-identification. When brain images from a particular

odality or sequence were not available for a participant, we did not

nput their photographs, because there is no correct match for them in

he dataset. Our approach could have been applied to MRI, PET, and

T images in the current study without any modification; however, we

ook the opportunity to update our testing software to use Microsoft’s

atest pre-trained models for face detection ( detection_03 ) and face recog-

ition ( recognition_04 ), updated from detection_01 and recognition_02 in

ur most recent earlier work ( Schwarz et al., 2021a ). These algorithms

re proprietary Microsoft products, and their underlying methodologies

ave not been published. 

Outcome measure: We statistically compared matching proportions

sing a Pearson’s chi-squared test implemented by prop.test in R version

.6.2 ( R Development Core Team, 2008 ). 

.3. Dataset for Aim 2 (effects of de-facing on measurements) 

Note that this aim does not require that participants have facial pho-

ographs available. We re-used a cross-sectional dataset of 300 individu-

ls (100 scanned using each MRI vendor, each including 50 cognitively

nimpaired (CU) + 50 with clinically diagnosed Alzheimer’s disease

AD)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

reviously constructed for our earlier work ( Schwarz et al., 2021a ). 244

f these individuals had available PET scans with Florbetapir, and we

sed this subset of 244 individuals for the current work. Among those
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Table 1 

Rates of automatically matching 5 photos of each participant to their correct corresponding imaging-based face reconstruction, using the Microsoft Azure Face API, 

before and after each de-facing technique. A 

∗ marks percentages with very low sample sizes that are likely overestimated and should not be directly compared 

with other rows. 

Standard Face Reconstruction 

(using the input image only, with minimal 

preprocessing) 

Advanced Face Reconstruction 

(missing nose and mouth automatically 

replaced with those from an average template) 

After 

Re-facing with mri_reface 

FLAIR MRI 178/182 (98%) N/A 15/182 (8%) 

T1-w MRI 176/182 (97%) N/A 14/182 (8%) 

Older FDG PET 44/129 (34%) 54/129 (42%) 0/129 (0%) 

Older PiB PET 41/167 (25%) 54/167 (32%) 6/167 (4%) 

Older Tau PET 48/167 (29%) 59/167 (35%) 3/167 (2%) 

Newer FDG PET 14/14 (100% 

∗ ) N/A 3/14 (21%) 

Newer PiB PET 17/20 (85% 

∗ ) N/A 3/20 (15%) 

Newer Tau PET 18/19 (95% 

∗ ) N/A 4/19 (21%) 

CT (from older PET/CT) 131/167 (78%) N/A 8/167 (5%) 

2  

M  

G  

P  

W  

i  

(  

c  

s  

p

2

 

f  

p  

n  

s  

P  

l  

o  

p  

2  

2  

p  

w  

t  

A  

S  

M  

M  

s  

u  

f  

t  

t  

c  

s

 

p  

r  

2  

m  

s  

a  

n  

t  

r  

b  

t  

(  

i  

e  

S  

v  

m

𝑖

 

e  

d  

m  

a

3

3

 

a  

i  

t  

m  

t  

t  

r  

t  

o  

s  

g  

a  

t  

r  

p  

b  

t  

f  

v  

c  

p  

f  

i

 

t  

c  

w  

F  

t  

t  
44 (119 CU, 125 with clinical AD), 85 had GE MRI, 78 had Phillips

RI, and 81 had Siemens MRI. PET scanner manufacturers were: 89

E, 26 Philips, 126 Siemens, and 4 CPS Innovations. Details of ADNI

ET acquisitions have been previously published ( Jagust et al., 2010 ).

e used the maximally preprocessed (co-registered, averaged, standard-

zed image and voxel size, uniform resolution) images provided by ADNI

 Joshi et al., 2009 ), which are considered homogenized against techni-

al sources of variability across PET scanners. We have also previously

hown that differing MRI vendors have only negligible effects on com-

uting regional PET SUVR measurements ( Schwarz et al., 2019b ). 

.4. Methods for Aim 2 (effects of de-facing on measurements) 

Regional Standardized Uptake Value Ratios (SUVRs) were measured

or each PET image, before and after de-facing, using two different

ipelines that each use corresponding T1-weighted MRIs for spatial

ormalization. For de-faced PET images, we also de-faced the corre-

ponding MRIs, since we expect that shared datasets with de-faced

ET would also de-face MRI. The pipelines were: 1) a previously pub-

ished in-house cross-sectional method ( Schwarz et al., 2021b ) based

n SPM12 ( Ashburner, 2009 ), the Mayo Clinic Adult Lifespan Tem-

late (MCALT; https://www.nitrc.org/projects/mcalt/ ) ( Schwarz et al.,

017 ), and ANTs ( Avants et al., 2008 ), and 2) PETSurfer ( Greve et al.,

016 ) from FreeSurfer version 6.0 ( Fischl, 2012 ). The in-house pipeline

erforms a rigid registration of each PET to the corresponding T1-

eighted MRI, then re-samples and performs regional calculations in

his native MRI space with SPM12-based MRI segmentation and an

NTS transform of the MCALT_ADIR122 atlas to native MRI space. PET-

urfer performs a rigid registration of each PET to the corresponding

RI using mri_coreg , then transforms these PET images to its standard

NI-based template space and performs regional calculations in this

pace using the Desikan-Killiany atlas ( Desikan et al., 2006 ). We did not

se partial volume correction (PVC) for either approach, to minimize ef-

ects of MRI on PET measurements. SUVR intensity normalization used

he cerebellar crus for the in-house pipeline in order to avoid poten-

ial bleed-in from cortical uptake across the tentorium into the superior

erebellum. This option is not available for PETSurfer, so we used the

tandard cerebellar gray matter reference. 

Outcome measures: We compared regional SUVR values from each

ipeline before and after de-facing using three metrics: 1) Intraclass Cor-

elation Coefficient (ICC, a measure of non-systematic or random error),

) bias (a measure of systematic error), and 3) median relative error (a

easure with more intuitive units, including both systematic and non-

ystematic error). For ICC, we used the ICC function from the pysch pack-

ge in R ( Revelle, 2019 ) to calculate the fixed-raters ICC3 variant that is

ot sensitive to differences in means between raters (i.e. is not sensitive

o systematic error). We then separately measured the systematic er-

or (bias) of the de-faced image measurements as the percent difference

etween the identity line and a linear least-squares fit ( lm function) of

he original vs. de-faced measurements, taken at the “centercept ” point
4 
mean value across the x axis, i.e. all measurements from the unmodified

mages) ( Wainer, 2000 ). We then separately calculated median relative

rror as a percentage by subtracting each pair of original and de-faced

UVR measurements for each region for each scan, taking the absolute

alue, normalizing by the SUVR from the original scan, and taking the

edian across scans ( Eq. 1 ). 

median 
 ∈ scans 

( 

100 ×
|||||
SUV R 𝑖, original − SUV R 𝑖, de−faced 

SUV R 𝑖, original 

|||||
) 

(1) 

Finally, we then summarized these ICC, bias, and median relative

rror values (across all regions, within each combination of pipeline and

e-facing method) using median values and boxplots. For readers who

ay prefer root mean square error instead of median relative error, we

lso provide this measurement in the supplementary table. 

. Results 

.1. Validation criterion 1: protection from face recognition 

Human, visual face recognition assessment: First, we present ex-

mples of photographs and face reconstructions from four volunteers,

n Fig, 2 . These images, from participants who generously consented to

heir publication, allow visual comparison of face identifiability across

odalities and across PET scanner generations. While skin pigmenta-

ion, hair, and eyewear are not imaged by these modalities, many struc-

ural features of the faces were preserved. The older-generation, cur-

ently prevalent PET scanners have worse resolution, a lower signal

o noise ratio (i.e. reduced sensitivity and contrast), and smaller field

f view (i.e. the mouth is often omitted) than newer scanners, but the

hape of the eyebrow ridge (the most important feature for modern al-

orithmic face recognition) was still present. Recognizability was visu-

lly similar across all three PET tracers. Artifacts around the mouth due

o dental fillings or implants were present on MRI and CT in the two

ight-most participants, but not on PET. On the CT, the two left-most

articipants also had parts of face masks, worn due to COVID-19, visi-

le across the nose bridge. Next in Fig. 3 , we also show the average head

emplate images for each image type that we constructed for use during

ace replacement with mri_reface . This figure is provided for additional

isual comparison across modalities, including average brain slices for

omparison of contrast properties (which we cannot show for individual

articipants), but because images were averaged across multiple scans

rom multiple individuals, they have higher image quality than most

ndividual participant scans. 

Automatic, algorithmic face recognition: In Table 1 , we present

he results of automated face recognition testing from using the Mi-

rosoft Azure Face API to attempt to match participants’ face photos

ith their face reconstructions from brain imaging. T1-weighted and

LAIR MRI had the highest recognition rates at 97% and 98% respec-

ively. This was followed by CT (from low-dose attenuation correc-

ion CT scans for PET/CT) at 78%. PET scans from older-generation,

https://www.nitrc.org/projects/mcalt/
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Fig. 2. Example face reconstructions from PET and CT, for visual comparison with photographs and MRI. PET scans from the newer model of clinical PET/CT scanner 

showed many identifiable features, across all tracers. CT scans (from PET/CT) were also highly identifiable despite some dental artifacts and face mask nose bridges. 

PET from older-generation scanners had lower quality and a smaller field of view but retained some identifiable features. These participants specifically consented 

to allow publication of their photographs and face reconstructions. Note that although positioning and head restraints in the scanner distort the lower face in the 

facial reconstructions, the brow ridge, which is a dominant feature in facial recognition, is minimally affected. 

5 
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Fig. 3. Average brain image templates from each image type, constructed for 

replacing the face with our mri_reface software. These illustrate the contrast 

properties of each modality and their relative potential for face reconstruction, 

but they are average images and thus have higher quality than individual par- 

ticipant scans. Scales were adjusted for best visibility for each image type. For 

FDG, the brain was intentionally oversaturated to allow visibility of the rela- 

tively dark face contour. 
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6 
ore prevalent PET/CT scanners had higher match rates when using

ur “advanced ” face reconstruction methods (which replaced missing

ose and mouth typically outside their field of view with average nose

nd mouth to enable face detection) than the “standard ” reconstruc-

ions that used only their imaged FOV. Using these advanced recon-

tructions, match rates were highest for FDG (42%), while those of PiB

nd Tau PET were both smaller and comparable to each other (32%

nd 35% respectively). However, sample sizes were smaller with FDG

129) than PiB and Tau (both 167), and these differences across modal-

ties were not significant (p = 0.12 for FDG vs. PiB). Although our sam-

le sizes for newer-generation PET scanners were very small ( < = 20),

ifferences within-tracer across scanners were significant (all < 0.001),

ut because matching problems are inherently easier with fewer can-

idates, their match percentages (85%-100%) are likely overestimated

s. what would be expected with a larger sample and they should not

e directly compared to the percentages from other table rows with

arger samples. De-facing each scan with mri_reface (replacing each face

ith a different, average face) greatly reduced recognition rates for

ll image types. Among modalities with data from at least 100 par-

icipants, the highest de-faced match rates were 8%, with MRI (both

1-w and FLAIR), which was reduced from 97-98%. Match rates with

lder PET scanners were reduced from 32-42% to 0-4%, and rates with

T were reduced from 78% to 5%. Match rates with newer PET scan-

ers were also greatly reduced (85-100% to 15-21%), but due to their

mall sample sizes we suggest caution in interpreting their likely-inflated

ercentages. 

.2. Validation criterion 2: minimizing effects on brain measurements 

We compared regional SUVR values computed from 244 Florbetapir

myloid PET scans from ADNI, each measured before and after de-facing

ith mri_reface, using both: 1) an in-house pipeline based on SPM12,

CALT, and ANTs, and 2) PETSurfer from FreeSurfer 6.0. For de-faced

mages, both the PET and the T1-weighted MRI (used for normalization)

ere each de-faced individually. FreeSurfer failed to produce segmen-

ation results for one participant’s MRI after de-facing, and this par-

icipant was omitted from analyses of results from both pipelines. Ef-

ects on the standard global amyloid region (combined bilateral pre-

rontal, orbitofrontal, parietal, temporal, anterior cingulate, and pos-

erior cingulate/precuneus regions) ( Klunk et al., 2004 ) are presented

n Fig. 4 . Overall, effects of de-facing on this large, global region were

ery small: ICC values were 1.00, biases were < 0.5%, and median rela-

ive errors were also < 0.5%, and difference magnitudes were consistent

cross the range of amyloid levels. Across these global SUVR measure-

ents (486 total), only 3/486 (0.6%) deviated > 3% from their values

ith unmodified images. The largest differences overall were 5.5% with

reeSurfer and 3.1% with Mayo pipelines (on different images). Effects

n individual regions are presented in Fig. 5 . For all regions, ICC val-

es were > 0.98, biases were < 2%, and median relative errors were also

 2%. 

. Discussion 

.1. Face recognition rates 

Contrary to our initial hypothesis, we found that brain PET images

ave a substantial risk for re-identification. We hypothesized that iden-

ifiable face reconstructions would not be feasible because the spatial

esolution of clinical PET scanners (roughly 5mm or more) would be in-

ufficient. Instead, we found that images from newer PET scanners can

roduce very high-quality face reconstructions, and that even scans from

lder, more-prevalent PET scanners could be recognized at rates up to

2%, which we consider sufficient to warrant de-identification. Among

he three tested PET tracers (FDG, PiB, and FTP), we hypothesized that

ace recognition rates would be smallest with FDG because the amount

f signal relative to the brain, in typical attenuation-corrected images,
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Fig. 4. Effects of de-facing PET and MRI with mri_reface on global amyloid PET measurements from the FreeSurfer/PETSurfer pipeline (left) and the in-house pipeline 

(right). The top row are scatterplots, and the bottom row are Bland-Altman plots of percent differences from the same data. On the Bland-Altman plots, dashed lines 

show the 95% limits of agreement (mean ± (1.96 ∗ SD)). 
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s the smallest. Instead, we found that FDG had the highest recognition

ates at 42%, compared to 32% and 35% for PiB and FTP respectively.

hese differences were not statistically significant, but still we were in-

orrect that recognition with FDG would be significantly smaller. This

ay be because there is some on-target uptake of glucose in facial mus-

le, whereas PiB and FTP binding in these regions is off-target with un-

ertain mechanisms that may vary across scans or be spatially nearby

ut different from the ideal recognizable face contour. 

Our finding of high face recognition match rates for CT images (78%)

as expected based on previous works ( Mazura et al., 2012 ; Chen et al.,

014 ; Parks and Monson, 2017 ). We expected these rates to be higher

nd more comparable with MRI (97%-98%), but their reduced recogniz-

bility may be because our CT images are low-dose scans from PET/CT

canners that were designed only to provide data for attenuation cor-

ection during PET image reconstruction, and these have a lower signal

o noise ratio (and thus lower contrast), and likely lower spatial reso-

ution, than standard-dose head CT scans from dedicated CT scanners,

hich were used in these earlier studies. Dental fillings and implants

lso cause more prominent effects on CT than structural MRI, and these
7 
re likely more prevalent in our sample of older individuals than the

ounger populations used in earlier studies. 

Rates of face recognition after mri_reface ( Table 1 ) were still higher

han the rate of recognition (correct identification) by chance alone of

/n (1 over sample size). However, they were far lower than the orig-

nal rates before de-facing, lower than the 30% we previously found

or MRI with our older version of mri_reface ( Schwarz et al., 2021a ) ,

nd lower than the 28%-38% we previously found for MRI with other

ompeting software ( Schwarz et al., 2021a ). It is important to note

hat recognition rates remaining above chance after mri_reface were

ot caused by “failures ” for any subset of the images: for all im-

ges, the face was completely replaced, as designed. We believe the

ace recognition software is exploiting remaining information from the

roportions of the head, through the replacement face that is trans-

ormed only linearly to match the rest of the head. For all modalities,

e will continue to improve mri_reface and release updated software

t https://www.nitrc.org/projects/mri_reface , but we propose that the

urrent performance is acceptable and worth using until newer versions

re developed. 

https://www.nitrc.org/projects/mri_reface
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Fig. 5. Effects of de-facing PET and MRI with mri_reface on regional amyloid PET measurements. The most extreme values on each plot are labelled. Complete data 

tables are available in supplementary material. 
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.2. Effects of de-facing on brain measurements 

Effects of de-facing both PET and MRI with mri_reface on global amy-

oid PET measurements ( Figure 4 ) were very small: ICC values were

.00, biases were < 0.5%, and median relative errors were also < 0.5%.

nly 0.5% of measurements deviated > 3% from their values with un-

odified images. Estimates of scan-rescan error on global measurements

rom amyloid PET images range from 3% ( Schwarz et al., 2018 ) to as

igh as 8% ( Tolboom et al., 2009 ). Thus, only 0.5% of de-faced global

myloid SUVR measurements had differences due to de-facing that ex-

eeded even the smallest estimates of test-retest error (3%), and the

aximum difference (5.5%) was still well below the largest estimates

8%). Effects on individual regions were larger than the global meta-

egion, consistent with previous findings that measurements from larger

ET regions tend to be more stable ( Schwarz et al., 2021b ). These effects

ere still very small, with ICC values > 0.98, biases < 2%, and median

elative errors also < 2%. We believe these effects are small enough to

e acceptable, but they are not perfect (where de-facing has no measur-

ble effects on brain measurements). It is important to note that these

ffects were not caused by any alteration of brain regions or voxels by

ri_reface ; rather, quantification of brain regions by popular software
8 
s affected by alteration of non-brain voxels in the image. For example,

ost methods include linear registration of the entire image to a tem-

late, and alterations anywhere in the image can cause small effects on

his registration that affects quantification globally. Many methods also

se relative intensity during segmentation, e.g. comparing brain regions

o other parts of the image, and thus altering non-brain regions can affect

egmentation of brain regions ( Buimer et al., 2021 ; de Sitter et al., 2020 ;

ao et al., 2022 ; Schwarz et al., 2021a ). Again, we will continue to im-

rove mri_reface and release updated software, but we propose that the

urrent performance is acceptable and worth using until newer versions

re developed. The regions with the largest effects ( Figure 5 ) frequently

ncluded frontal areas most proximal to the face, and areas in the basal

anglia, consistent with previous findings showing that these were most

ffected by de-facing MRI ( Buimer et al., 2021 ; Schwarz et al., 2021a ).

or PET images, instability in the basal ganglia may also be explained

y the relatively low counts (i.e. noisier signal after boosting by atten-

ation correction) in these regions. These also included relatively small

egions like the entorhinal cortex, accumbens, and dorsal mesopontine

reas, which were not relatively poor performers in de-faced MRI, but

heir worse performance in de-faced PET is consistent with the principle

hat smaller regions typically have less-stable PET measurements. 



C.G. Schwarz, W.K. Kremers, V.J. Lowe et al. NeuroImage 258 (2022) 119357 

4

 

o  

e  

r  

t  

i  

p  

t  

t  

i  

a  

P  

f  

f  

c

 

s  

t  

f  

a  

r  

w  

r  

w  

o  

t  

a  

t  

t  

i  

w  

r  

p  

t  

t  

b  

I  

C  

o  

i  

o  

A  

o  

b  

d  

i  

t  

w  

t  

l  

w  

o  

d  

y  

i

 

w  

w  

i  

t  

i  

o  

a  

d  

t  

r  

m  

p  

s  

f  

p  

o

5

 

t  

r  

s  

r  

(  

i  

s  

g  

s  

m  

a  

a  

d  

f  

f  

S  

<  

P  

a

D

 

g  

t  

(  

t  

p  

d  

S  

a  

M  

a  

F

D

 

 

 

 

 

 

 

 

 

.3. Strengths and limitations of current study 

Strengths: While previous works have examined face identifiability

f brain images from MRI and for CT, this is, to the best of our knowl-

dge, the first to examine this question for PET images. We tested face

ecognition performance using leading, publicly available face recogni-

ion software, which we believe best represents the types of scenarios

n which a motivated individual might attempt to re-identify research

articipants from de-identified data. We have previously published ex-

ensive discussion of the strengths and limitations of our face recognition

esting approach ( Schwarz et al., 2019a , 2021a ). We believe this work

s also the first to compare identifiability of MRI, PET, and CT directly,

nd our results were largely consistent across three different classes of

ET tracers. We validated our de-facing software both for preventing

ace identification and minimizing its impacts on brain measurements

rom de-faced images, and we provide this software free to the research

ommunity. 

Limitations: Our sample sizes for newer PET scanners were very

mall ( < = 20), but our major conclusions were well supported without

his data, and the limited data from these newer scanners suggests that

ace recognizability from PET images will only become a larger threat

s data from these scanners becomes more widely available. We will

e-examine these conclusions with a larger sample in future work as

e continue to acquire data from newer scanners. We did not test face

ecognition with additional amyloid or tau tracers, but since our results

ere very consistent across FDG, PiB, and FTP, we hypothesize that

ther amyloid and tau tracers would behave similarly. We also did not

est additional MRI modalities, but this is a focus of our future work. We

lso did not test for any relationships between brain PET signal and po-

ential for face recognition (e.g. frontal lobe cortical signal spilling into

he eyebrow region), but as our cohort grows we will have more partic-

pants with enough amyloid and tau tracer uptake allow this in future

ork. We also did not examine the effects of different levels of post-

econstruction smoothing filters on identifiability of PET images; it is

ossible that less smoothing could allow reconstruction of smaller iden-

ifiable features but also retain more noise that could impede reconstruc-

ion. We only tested our own de-facing software ( mri_reface ) because we

elieve it is the only one that has been adapted for PET imaging data.

t would be theoretically possible to run programs designed for MRI or

T using PET images instead, but since they would be registered to MRI

r CT templates with very different contrast and resolution properties,

t is uncertain how well this would work. We tested effects of de-facing

n SUVR measurements using amyloid PET (Florbetapir) images from

DNI because it is a free, public dataset that could allow replication of

ur findings. We did not perform similar testing using other PET tracers

ecause these were not available in sufficient numbers from our re-used

ataset, but the quantification techniques used for these modalities are

dentical to those used for amyloid, Still, we will examine this in fu-

ure work. We hypothesize that results would be very similar, because

e have shown that estimates of test-retest error and software factors

hat affect measurement precision are remarkably similar across amy-

oid and tau PET tracers ( Schwarz et al., 2021b , 2018 ). Our datasets

ere both sampled from studies of aging and contain only images from

lder adults. Others have found that that de-facing software, primarily

esigned for images of older adults, may perform worse in images from

ounger individuals ( Buimer et al., 2021 ), and we will also explore this

n future work. 

Our face recognition testing paradigm measures the success rates at

hich a motivated individual might be able to re-identify a participant

hom they have reason to believe exists within a dataset. We think this

s a plausible and scenario, but it is a much easier recognition problem

han an opposite paradigm where someone attempts to identify brain-

maging-based face reconstructions by matching them to large databases

f identified photos from theoretically all people on Earth. We are un-

ble to quantify this paradigm due to limited legally obtained public

atasets with face photographs of older participants, and limitations of
9 
he consent signed by our participants. However, our 98% recognition

ates with the current paradigm (with MRI) suggests that the perfor-

ance of matching MRIs with photos is rapidly approaching that of

hotos to photos, for which modern face recognition algorithms can

uccessfully identify photos from databases of > 12 million with < 1%

ailure rates ( Grother et al., 2018 ), so we hypothesize that the opposite

aradigm may already be plausible with current or near-future technol-

gy. 

. Conclusions 

To the best of our knowledge, this study is the first to demonstrate

hat de-identified research PET images may be re-identifiable via face

ecognition. Images from the currently prevalent generation of PET/CT

canners were automatically matched with identified face photos at

ates of 32-42%. These rates were lower than MRI (97-98%) and CT

78%), but still high enough that research studies should consider us-

ng face de-identification software on PET images in addition to CT and

tructural MRI. We also showed preliminary evidence that the newest

enerations of PET/CT scanners can produce even better face recon-

tructions than older scanners, and the need for de-facing PET images

ay increase as these scanners become more prevalent. We tested FDG,

myloid (PiB) and tau (FTP) PET, and all showed similar rates of identifi-

bility (32%-42%). We also extended our mri_reface software to support

e-facing of PET and CT images, and we validated its effects. Rates of

ace recognition on de-faced images were reduced to 0-4% for PET, 5%

or CT, and 8% for MRI. Effects of de-facing on regional amyloid PET

UVR measurements were small: ICC values were > 0.98, biases were

 2%, and median relative errors were < 2%. Effects on global amyloid

ET SUVR measurements were even smaller: ICC values were 1.00, bi-

ses were < 0.5%, and median relative errors were also < 0.5%. 

ata and code availability statement 

ICC, bias, and median relative error calculations for every re-

ional measurement from each pipeline are provided in supplemen-

ary material. ADNI images are available directly through ADNI

 http://adni.loni.usc.edu/ ). The face recognition dataset contains par-

icipant photos, which are considered primary identifiers; to protect

articipant privacy and comply with their signed consent forms, these

ata cannot be shared. MRI, PET, and other data from the Mayo Clinic
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ble to qualified academic and industry researchers by request to the
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